Menu English Ukrainian Russe Accueil

Bibliothèque technique gratuite pour les amateurs et les professionnels Bibliothèque technique gratuite


ENCYCLOPÉDIE DE LA RADIOÉLECTRONIQUE ET DU GÉNIE ÉLECTRIQUE
Bibliothèque gratuite / Schémas des appareils radio-électroniques et électriques

УКВ трансвертер. Энциклопедия радиоэлектроники и электротехники

Bibliothèque technique gratuite

Encyclopédie de l'électronique radio et de l'électrotechnique / Radiocommunications civiles

Commentaires sur l'article Commentaires sur l'article

Данный трансвертер на диапазон 144... 144,5 МГц предназначен для работы совместно с коротковолновым трансивером, имеющим диапазон 21...21.5 или 28...28.5 МГц. Выходная мощность трансвертера в режиме передачи - 5 Вт (при уровне мощности, поступающей с трансивера около 1 мВт). Коэффициент шума в режиме приема составляет 2...2,6 kTo (при коэффициенте шума приемной части KB трансивера не более 10...15 kТo).

Трансвертер имеет линейный передающий тракт, т. е. обеспечивает линейную зависимость между амплитудой сигнала, подаваемого с KB трансивера, и амплитудой выходного сигнала (в диапазоне 144 МГц).

Принципиальная схема трансвертера изображена на рис. 1. Его можно разделить на три основные части: приемный (транзисторы V9,. V10) и передающий (V1- V4) тракты и общий для них гетеродин (V5- V8).

Кварцевый автогенератор гетеродина выполнен на транзисторе V5 по схеме емкостной "трехточки". Выбор нужной механической гармоники кварцевого резонатора обеспечивается соответствующей настройкой контура L9C19C20. В данном случае кварцевый резонатор 6833,3 кГц(6444.4 кГц) (здесь и далее в скобках указаны частоты для трансвертера, имеющего промежуточную частоту 28...28,5 МГц.) возбужден на третьей механической гармонике, т. е. на частоте 20,5 МГц (19,333МГц).

С автогенератора сигнал поступает вначале на утроитель частоты (транзистор V6), нагрузкой которого служит полосовой фильтр L10C25L11C26. настроенный на частоту 61,5 МГц (58 МГц), затем на удвоитель (транзистор V7) и далее на усилитель (транзистор V8). Фильтрацию выходного сигнала гетеродина частотой 123 МГц (116 МГц) обеспечивают контуры L12C30 и L13CS4.

Приемный тракт содержит усилитель ВЧ и смеситель. Усилитель собран на транзисторе V9, включенном по схеме с общим эмиттером. Выбранная схема стабилизации режима работы транзистора по постоянному току (с помощью резистора R22) позволяет непосредственно, без блокировочной емкости, заземлить эмиттер транзистора. Это обеспечивает высокий устойчивый коэффициент усиления каскада. Для повышения КПД входной цепи контур L15C39 сильно связан с базовой цепью транзистора V9. Связь усилителя с антенной - емкостная. Конденсаторы C38, С40 и катушка L15 образуют фильтр верхних частот, препятствующий проникновению на выход конвертера помех от мощных коротковолновых радиостанций. Нагрузка усилителя ВЧ - полосовой фильтр L16C4SL17C45.

Сигналы гетеродина и высокочастотного усилителя суммируются в смесителе (транзистор V10). Согласование смесителя со входом приемника обеспечивает контур L18C50C51C52.

Передающий тракт начинается со смесителя, выполненного на транзисторе V4. Напряжение гетеродина поступает на базу транзистора V4 с контура L13C34. Сформированный в трансивере телеграфный, AM или SSB сигнал поступает на смеситель через контур L14C35C37. Нагрузкой смесителя служит полосовой фильтр L8C15L7C14, настроенный на частоту 144 МГц.

Transverteur VHF
Fig.1 (cliquez pour agrandir)

Преобразованный сигнал усиливается трехкаскадным линейным усилителем. Первый каскад на транзисторе V3 работает в режиме класса А. Для лучшей фильтрации побочных излучений транзистор слабо связан со входным L7C14 и выходным L6C10 контурами. Основное усиление (около 20 дБ) обеспечивает второй каскад, на транзисторе V2. Он также работает в режиме класса А. Согласование предоконечного и оконечного каскадов происходит через контур L4C5C6C7.

Оконечный каскад работает в режиме класса АВ. Необходимое смещение на базу транзистора V1 поступает с делителя R2R3. Для предупреждения самовозбуждения (так называемых дроссельных автоколебаний) верхний по схеме вывод дросселя L3 не заблокирован конденсатором.

Согласование оконечного усилителя с антенной обеспечивает контур L1C1C2. Как показала практика работы с трансвертером, выполненным по этой схеме, простая модификация выходного контура (конденсатор С2 подключается не к катушке L1, а на выход устройства, модификация монтажной платы очевидна - конденсатор C2 в этом случае надо установить левее (см. вкладку) конденсатора С1) позволяет улучшить фильтрацию побочных излучений. Налаживание конструкции будет описано применительно к этому, более совершенному варианту.

Так как в передатчике нет устройства защиты выходного транзистора, то следует. избегать работы выходного каскада на сильно рассогласованную нагрузку.

Construction et détails

Трансвертер смонтирован на плате из одностороннего фольгированного стеклотекстолита толщиной 1...2 мм и размерами 165х210 мм. Внешний вид платы в масштабе 1 : 1 показан на рисунке

В конструкции трансвертера нет экранирующих перегородок, но это не приводит к самовозбуждению устройства: монтаж элементов на малой высоте над металлической поверхностью обеспечивает малый уровень паразитных межкаскадных связей. Несколько необычный вид имеют контуры трансвертера, работающие на частотах выше 100 МГц. Это - укороченные емкостью четвертьволновые резонаторы, изогнутые для уменьшения габаритов. Добротность ненагруженного резонатора составляет примерно 250. Почти такую же добротность можно получить и у обычного контура из посеребренного провода. Однако поле рассеяния у него больше, и в этом случае не обойтись без дополнительных мер по экранировке каскадов трансвертера.

Четвертьволновые резонаторы выполнены из посеребренного провода диаметром 0,8...1 мм. Высота линии над платой - около 2,5 мм. При уменьшении высоты поле рассеяния уменьшается, но падает и добротность. Для придания жесткости линия опирается на пять площадок, для чего в местах изгиба линия дополнительно согнута в горизонтальной плоскости под углом около 45°. Лишь на площадку, стоящую ближе всего к "земляному" выводу резонатора, линия опирается с помощью небольшого, отрезка провода. Следует сразу заметить, что размеры линии и ее конфигурация не очень критичны, так как подстроечный конденсатор обеспечивает перестройку резонатора в очень широком диапазоне частот.

На плате имеется бороздка между первыми каскадами гетеродина и выходными каскадами передающего тракта. Она играет роль теплового изолятора, который препятствует нагреву деталей кварцевого генератора теплом, распространяющимся от выходных каскадов по фольге.

Все маломощные транзисторы вставлены с обратной стороны платы в отверстия, просверленные в ней. Транзисторы опираются на ободок, имеющийся на их корпусе. Если толщина платы превышает 1...1.5 мм, то отверстия, предназначенные для транзисторов V9, V10, необходимо раззенковать с обратной стороны сверлом большего диаметра с таким расчетом, чтобы донышко транзистора находилось на одном уровне с фольгой.

Для транзисторов двух последних каскадов передающего тракта, снабженных радиаторами, в плате необходимо сделать отверстия диаметром, равным внешнему диаметру транзисторов. Лучше, если отверстия будут шестигранные, так как это предотвратит вращение транзистора при креплении радиатора.

В выходном каскаде применен транзистор КТ907А, у которого эмиттерный вывод соединен с корпусом. Для уменьшения индуктивности эмиттерного вывода между транзистором и радиатором необходимо вставить прокладку из медной фольги. Концы прокладки припаивают к плате. Длина выводов конденсатора С5, включенного между базой и эмиттером выходного транзистора, должна быть минимальной.

Монтаж выполнен на опорных точках, которые образованы кольцевыми канавками, вырезанными в фольге. Ширина канавки - 0,5...0,8 мм. Диаметр опорного кружка около 5 мм.

Transverteur VHF
Ris.2

Для изготовления таких канавок можно воспользоваться простейшим приспособлением, устройство которого показано на рис. 2. Приспособление состоит из иглы, миниатюрного резца и крепежной детали. Игла и резец изготовлены из отслуживших срок зубоврачебных боров. Для их заточки удобно воспользоваться абразивным камнем или алмазным надфилем. Крепежная деталь изготовлена из стальной втулки диаметром 6 мм. Боры вставлены в два отверстия, просверленные во втулке, и закреплены двумя винтами МЗ. Для надежного крепления боров на их боковых поверхностях желательно сиять фаску. Хвостовик иглы должен быть длиннее хвостовика резца для того, чтобы его можно было закрепить в дрели. Однако не составит большого труда сделать кольцевые канавки вручную. Для этого удобно зажать приспособление в ручные ювелирные тиски. Не следует прикладывать излишнее усилие я стараться вырезать канавку за один раз, так как это приведет к появлению задиров фольги.

Паяют детали "в накладку". Пунктиром на вкладке показаны проводники, расположенные с обратной стороны платы. Они пропускаются через отверстия, просверленные вблизи соответствующих контактных площадок.

При подборе деталей для трансвертера полезно учесть, что номиналы большинства конденсаторов некритичны. Это, прежде всего, относится к блокировочным конденсаторам, стоящим в цепях питания, емкость которых можно менять в пределах от 500 до нескольких тысяч пикофарад. Некритичны также емкости разделительных конденсаторов, осуществляющих связь транзисторов с резонансными контурами. Их значения можно изменять в пределах от -50 до +100%.

Дроссели L2, L3 и L5- бескаркасные, изготовлены из отрезка провода ПЭВ-2 0,3 длиной около 150 мм. Провод намотан на оправку диаметром 2,6 мм. Катушки L1, L10, L11- бескаркасные, намотаны на оправке диаметром 9 мм посеребренным проводом диаметром 0,8 мм. Катушка L1 содержит 3 витка (длина намотки 7 мм), L0 и L11-по 8 витков (длина намотки 14 мм). В катушке L10 отвод сделан от 1,25-го Витка, в катушке L11-от 3,75-го витка, считая от нижнего по схеме вывода. Катушки L9, L14, L18 намотаны на каркасах диаметром 5 мм проводом ПЭВ-2 0.15. Число витков - 18. Для подстройки использованы сердечники из карбонильного железа с резьбой М4.

В трансвертере применены конденсаторы КМ и КТ, резисторы М+ и МЛТ.

Налаживание трансвертера

следует начинать с кварцевого автогенератора. Прежде всего надо через конденсатор емкостью 1000- 5000 пФ временно соединить базу транзистора V5 с корпусом. При этом кварцевый автогенератор превратится в обычный LC генератор. Частота генерации в этом случае будет определяться контуром L9C19C20. Вращением подстроечника катушки. L9 надо ее установить близкой к утроенной частоте кварцевого резонатора. После этого конденсатор от базы транзистора V5 отключают и находят такое положение подстроечника, в котором он в наименьшей степени влияет на частоту генерации.

Затем приступают к настройке умножителей частоты. При их настройке, как, впрочем, и всех остальных каскадов трансвертера, необходимо контролировать режимы работы транзисторов по постоянному току. Удобнее всего измерять Напряжение на коллекторе, так как при известном сопротивлении резистора, стоящего в коллекторной цепи, легко определить ток, протекающий через транзистор. Измерения надо производить через резистор сопротивлением не менее 10 к0м. Его надо закрепить на кончике щупа так. чтобы проводник, подключенный к элементам трансвертера, имел минимальную длину. Очевидно, что при наличии добавочного резистора показания вольтметра будут занижены, однако возникающую погрешность нетрудно учесть.

Налаживание утроителя начинают с регулировки режима возбуждения. Подбором конденсатора С22 надо добиться, чтобы постоянное напряжение на коллекторе транзистора V6 составило 5...6 В. Это соответствует коллекторному току транзистора около 6 мА.

После этого приступают к настройке двухконтурного фильтра L10C25L11C26. Настройка производится по максимуму коллекторного тока транзистора V7. Необходимую степень возбуждения транзистора V7 можно регулировать, изменяя коэффициент включения контуров фильтра. При подборе отводов на катушках надо следить, чтобы оба контура были нагружены примерно в одинаковой степени. Если один из контуров имеет более "тупую" настройку, то отвод на катушке следует перенести ближе к нижнему по схеме выводу. При правильной настройке фильтра постоянное напряжение на коллекторе транзистора V7 должно лежать в пределах 5...6 В.

Если размеры катушек L10 и L11 выдержаны достаточно точно, а подстроечные конденсаторы находятся примерно в среднем положении. То опасность настройки фильтра на неправильную гармонику невелика. Однако, особенно если изменены размеры катушек или частота кварцевого генератора, полезно тем или иным способом проверить правильность настройки.

Можно, например, воспользоваться приемником, работающим в нужном диапазоне частот. Ко входу приемника надо подключить отрезок провода, другой конец которого поднести к контуру L10C25. При вращении подстроечного конденсатора С25 максимум громкости сигнала должен cовпадать с максимумом коллекторного тока транзистора V7. Возможности такого метода проверки ограничены тем, что большинство связных приемников имеет диапазон рабочих частот не более 25 МГц. Расширить диапазон принимаемых частот можно с помощью простейшей приставки, схема которой показана на рис. 3.

Transverteur VHF
Ris.3

Приставка представляет собой кварцевый автогенератор, выполненный на транзисторе VI. В ней можно применить любой кварцевый резонатор с собственной частотой в пределах 8... 15 МГц. Одновременно транзистор выполняет функции смесителя, работающего на гармониках частоты кварцевого автогенератора. Автогенератор отрезком кабеля соединяют со входом коротковолнового приемника.

При налаживании гетеродинного тракта приставку с помощью короткого отрезка монтажного провода надо связать с контуром настраиваемого умножителя. Для этого достаточно изолированный конец монтажного провода поднести к "горячему" выводу контурной катушки. Так как в приставке нет избирательных цепей, прием происходит одновременно на многих гармониках автогенератора. Разобраться в возникающей массе сигналов помогает то, что заранее известны частоты кварцевого генератора гетеродина и кварцевого генератора приставки.

В качестве примера рассмотрим процесс настройки контура L10C25 на частоту 61,5 МГц. Пусть в приставке использован кварцевый резонатор на частоту 9620 кГц, а проверка кварцевого генератора трансвертера показала, что его частота составляет 20504 кГц. В этом случае сигнал на выходе утроителя будет иметь частоту 61 512 кГц. Такой сигнал можно прослушивать, используя четвертую или пятую гармонику гетеродина приставки. В первом случае сигнал следует искать на частоте 23032 кГц(61512-9620*4). Во втором варианте, который подходит для приемников, имеющих более узкий

рабочий диапазон, сигнал надо искать на частоте 13412 кГц(61612- -9620*6). Таким способом можно контролировать правильность настройки умножителей вплоть до частот 400...500 МГц. В принципе, диапазон частот можно еще более расширить, если применять более высокочастотный транзистор и уменьшить емкость конденсаторов С2, С4.

Правильность настройки умножителей можно также проверить резонансным волномером.

После того как подано необходимое возбуждение на базу транзистора V7, приступают к настройке контура L12C30 на частоту 123МГц (116 МГц). Следующий за удвоителем каскад является усилителем на транзисторе V8, работающем в классе "А". Коллекторный ток транзистора V8 слабо зависит от величины возбуждения, поэтому его нельзя использовать для индикации настройки контура удвоителя L12C30. Настройку надо производить с помощью приемника или в простейшем случае с помощью высокочастотного пробника, подключаемого к авометру. Схема пробника показана на рис. 4. Авометр следует переключить на наиболее чувствительную шкалу измерения постоянного тока. Степень связи пробника с настраиваемым узлом можно регулировать, передвигая точку подключения пробника к контуру.

Transverteur VHF
Ris.4

После того как контур L12C30 настроен на нужную частоту, переходят к налаживанию оконечного усилителя гетеродинного тракта. Прежде всего при отсутствии сигнала возбуждения подбором резистора R20 необходимо установить коллекторный ток транзистора V8 в интервале 7...8 мА. После этого на транзистор V8 надо подать возбуждающее напряжение и с помощью высокочастотного пробника настроить контур L13C34.

Налаживание приемного тракта начинают с установки режимов транзисторов V9 я V10 по постоянному току. Подбором резисторов R22 и R26 следует установить коллекторные токи этих транзисторов в пределах 2...2,5 мА. После этого смеситель подключают ко входу коротковолнового приемника, настроенного на частоту 21,2 МГц (28.2 МГц) и по максимуму шума настраивают контур L8C50C51C52.

Подключая высокочастотный пробник поочередно к контурам L17C45, L16C43. настраивают полосовой фильтр по максимуму сигнала гетеродина. Затем, постепенно уменьшая емкость подстроечных конденсаторов, перестраивают полосовой фильтр на частоту 144 МГц. При этом наиболее удобно воспользоваться шумовым источником сигнала.

Transverteur VHF
Ris.5

Схема генератора шума показана на рис. 5. Источником шума является эмиттерный переход транзистора V1, работающего в режиме пробоя обратным напряжением. Интенсивность генерируемого шума составляет несколько сот kTо. Это позволяет для улучшения согласования пробника с входом приемника добавить аттенюатор на резисторах R2, R3 с коэффициентом ослабления около 13 дБ. Пробник собирают в небольшой коробке. При монтаже надо обратить особое внимание на минимальную длину выводов транзистора V1, резисторов R2, R3 и конденсатора С2.

Еще лучше результаты получаются, если применить в генераторе шума германиевый СВЧ диод ГА402 Он имеет меньшую емкость и индуктивность выводов. Налаживание такого пробника сводится к установке резистором R1 тока через диод в пределах 1...3 мА. Для устойчивой работы желательно, чтобы напряжение источника питания в 2...3раза превышало напряжение, при котором начинается пробой диода.

С помощью пробника можно легко настроить приемный тракт на максимальный коэффициент усиления. Для этого на выход основного приемника необходимо подключить авометр в режиме измерения переменного напряжения, а затем настройкой контуров и подбором межкаскадных связей добиться максимальных показаний прибора. Полосу пропускания приемного тракта трансвертера также легко определить по уменьшению показаний авометра при расстройке базового приемника. Полоса в основном определяется параметрами фильтра L16C43L17C45, а также добротностью нагруженного контура L18C50. Полосу можно расширить, увеличивая емкость конденсатора С44 и уменьшая коэффициент деления емкостного делителя C51C52.

Окончательная настройка производится с помощью измерительного генератора шума или при прослушивании сигналов, принимаемых из эфира.

Следует также учесть, что самовозбуждение усилителя ВЧ при отключении антенны или ее эквивалента не является признаком неправильной настройки приемного тракта.

При налаживании передающего тракта сначала устанавливают режимы работы транзисторов по постоянному току. Подбором резистора R10 добиваются, чтобы напряжение на коллекторе транзистора V4 было равным 4-7 В, что соответствует току 10 мА. Резистором R8 устанавливают режим работы транзистора V3 (на его коллекторе должно быть напряжение +9 В). При регулировке начального тока предоконечного и оконечного транзисторов лучше измерять постоянное напряжение на коллекторе относительно "плюсового" провода. Падение напряжения на резисторе R4 должно быть 4 В, а на R1-0,2 В.

После этого временно отключают питание от транзисторов VI и V2 и приступают к настройке резонансных контуров. Первоначальную настройку производят в отсутствии сигнала частотой 21 МГц (28 МГц). Резонансные контуры L8C15, L7C14 к L6C10 настраивают на частоту гетеродина, т. е. на частоту 123 МГц (116 МГц), используя высокочастотный пробник, поочередно подключаемый к данным контурам. Затем на вход смесителя подают сигнал частотой 21,2 МГц (28,2 МГц). Амплитуду сигнала увеличивают до тех пор, пока не начнется заметное уменьшение коллекторного тока транзистора V4. Одновременно подстраивают контур L14C35C37. Сигнал гетеродина на выходе смесителя должен при этом несколько уменьшиться.

Затем высокочастотный пробник слабо связывают с резонатором L8 и, вращая ось подстроечного конденсатора C15 (в сторону уменьшения емкости), находят ближайший максимум напряжения (он должен соответствовать частоте 144,2 МГц). Затем на эту же частоту последовательно перестраивают контуры L7C14 и L6C10.

В последнюю очередь налаживают два последних каскада передающего тракта. Во избежание выхода из строя транзистора V1 передающий тракт надо подключить к нагрузке, соответствующей волновому сопротивлению фидера. Если предполагается использовать фидер с волновым сопротивлением 75 Ом, то в качестве нагрузки можно использовать четыре включенных параллельно резистора МЛТ-2 сопротивлением 300 Ом, если 50 Ом, то шесть таких резисторов. Нагрузка (рис. 6) снабжена диодным детектором, позволяющим контролировать выходную мощность, передатчика.

Transverteur VHF
Ris.6

Нагрузочные резисторы и детектор помешают в небольшую металлическую коробку, снабженную высокочастотным разъемом. Резисторы R1-R4 располагают в виде звезды вокруг разъема. Они должны иметь минимальную длину выводов. Если детектор снабдить собственным стрелочным индикатором, то получится автономный прибор - простейший измеритель мощности.

После подключения нагрузке и подачи напряжения питания на последние два каскада приступают к настройке контура L4C6, добиваясь максимума коллекторного тока транзистора V1. Перед этим транзистор V1 надо максимально связать с нагрузкой, т. е. конденсатор С1 должен иметь максимальную емкость, а конденсатор С2 - минимальную. Коллекторный ток транзистора V1 может достигать значения 500 мА и более. Если возбуждение недостаточно, то полезно еще раз подстроить все предварительные каскады, а также несколько уменьшить емкость конденсаторов С5 и С7. Настройка выходной цепи производятся по максимуму показаний индикатора мощности. При этом надо учесть, что чем больше емкость конденсатора С2, тем слабее связь с нагрузкой. При слабой связи и максимальном уровне возбуждения возможен переход транзистора в сильно перенапряженный режим, при котором возникает опасность выхода транзистора из строя. Поэтому таких режимов работы следует избегать.

Автор: С Жутяев (UW3FI), г. Москва; Публикация: Н. Большаков, rf.atnn.ru

Voir d'autres articles section Radiocommunications civiles.

Lire et écrire utile commentaires sur cet article.

<< Retour

Dernières nouvelles de la science et de la technologie, nouvelle électronique :

Machine pour éclaircir les fleurs dans les jardins 02.05.2024

Dans l'agriculture moderne, les progrès technologiques se développent visant à accroître l'efficacité des processus d'entretien des plantes. La machine innovante d'éclaircissage des fleurs Florix a été présentée en Italie, conçue pour optimiser la phase de récolte. Cet outil est équipé de bras mobiles, lui permettant de s'adapter facilement aux besoins du jardin. L'opérateur peut régler la vitesse des fils fins en les contrôlant depuis la cabine du tracteur à l'aide d'un joystick. Cette approche augmente considérablement l'efficacité du processus d'éclaircissage des fleurs, offrant la possibilité d'un ajustement individuel aux conditions spécifiques du jardin, ainsi qu'à la variété et au type de fruits qui y sont cultivés. Après avoir testé la machine Florix pendant deux ans sur différents types de fruits, les résultats ont été très encourageants. Des agriculteurs comme Filiberto Montanari, qui utilise une machine Florix depuis plusieurs années, ont signalé une réduction significative du temps et du travail nécessaires pour éclaircir les fleurs. ...>>

Microscope infrarouge avancé 02.05.2024

Les microscopes jouent un rôle important dans la recherche scientifique, car ils permettent aux scientifiques d’explorer des structures et des processus invisibles à l’œil nu. Cependant, diverses méthodes de microscopie ont leurs limites, parmi lesquelles la limitation de la résolution lors de l’utilisation de la gamme infrarouge. Mais les dernières réalisations des chercheurs japonais de l'Université de Tokyo ouvrent de nouvelles perspectives pour l'étude du micromonde. Des scientifiques de l'Université de Tokyo ont dévoilé un nouveau microscope qui va révolutionner les capacités de la microscopie infrarouge. Cet instrument avancé vous permet de voir les structures internes des bactéries vivantes avec une clarté étonnante à l’échelle nanométrique. En général, les microscopes à infrarouge moyen sont limités par leur faible résolution, mais le dernier développement des chercheurs japonais surmonte ces limitations. Selon les scientifiques, le microscope développé permet de créer des images avec une résolution allant jusqu'à 120 nanomètres, soit 30 fois supérieure à la résolution des microscopes traditionnels. ...>>

Piège à air pour insectes 01.05.2024

L'agriculture est l'un des secteurs clés de l'économie et la lutte antiparasitaire fait partie intégrante de ce processus. Une équipe de scientifiques du Conseil indien de recherche agricole et de l'Institut central de recherche sur la pomme de terre (ICAR-CPRI), à Shimla, a mis au point une solution innovante à ce problème : un piège à air pour insectes alimenté par le vent. Cet appareil comble les lacunes des méthodes traditionnelles de lutte antiparasitaire en fournissant des données en temps réel sur la population d'insectes. Le piège est entièrement alimenté par l’énergie éolienne, ce qui en fait une solution respectueuse de l’environnement qui ne nécessite aucune énergie. Sa conception unique permet la surveillance des insectes nuisibles et utiles, fournissant ainsi un aperçu complet de la population dans n'importe quelle zone agricole. "En évaluant les ravageurs cibles au bon moment, nous pouvons prendre les mesures nécessaires pour lutter à la fois contre les ravageurs et les maladies", explique Kapil. ...>>

Nouvelles aléatoires de l'Archive

Cartes graphiques ROG Strix GeForce GTX 1080 Ti et Turbo GeForce GTX 1080 Ti d'Asus 22.03.2017

Asus a dévoilé les nouvelles cartes graphiques Republic of Gamers (ROG) Strix GeForce GTX 1080 Ti et Asus Turbo GeForce GTX 1080 Ti basées sur le GPU Nvidia GeForce GTX 1080 Ti.

Les nouvelles cartes graphiques offrent une augmentation de 35 % des performances par rapport aux cartes graphiques de la série GeForce GTX 1080 et surpassent les cartes graphiques de la série Nvidia Titan X. Une caractéristique importante des ROG Strix GeForce GTX 1080 Ti et Turbo GeForce GTX 1080 Ti est qu'elles prennent en charge les dernières technologies de jeu. et possibilités de réalité virtuelle. La haute qualité de ces cartes graphiques est garantie par le processus de production entièrement automatisé Auto-Extreme. Le package de nouveaux produits comprend le logiciel GPU Tweak II, qui est utilisé pour configurer et surveiller les paramètres de la carte vidéo.

La ROG Strix GeForce GTX 1080 Ti est large de 2,5 emplacements pour une meilleure dissipation de la chaleur. La ROG Strix GeForce GTX 1080 Ti intègre de nombreuses technologies exclusives à Asus, dont le premier système de refroidissement hautes performances MaxContact de l'industrie avec technologie de contact direct (caloducs en contact direct avec la surface du GPU) et trois ventilateurs avec une géométrie de turbine optimisée. Grâce à eux, ce refroidisseur est capable de refroidir la carte vidéo à un faible niveau de charge en mode passif, c'est-à-dire à un niveau de bruit nul. L'efficacité de ce système de refroidissement a augmenté de 30 % et le niveau sonore a été divisé par trois par rapport à des modèles similaires. La protection partielle contre la poussière des ventilateurs (IP5X) prolonge la durée de vie du système de refroidissement.

La prise en charge de la technologie d'éclairage LED exclusive Asus Aura Sync aidera à compléter et à diversifier l'apparence de la ROG Strix GeForce GTX 1080 Ti. La présence de deux ports HDMI vous permettra de connecter facilement des kits VR et de vous immerger dans le monde passionnant de la réalité virtuelle sans déconnecter le moniteur principal de la carte vidéo.

L'Asus Turbo GeForce GTX 1080 Ti est équipée d'un ventilateur à double roulement à billes qui dure plusieurs fois plus longtemps que les ventilateurs à roulement à billes traditionnels. La possibilité d'installer un logo ajoutera de l'individualité au système. La présence de deux ports HDMI vous permettra de connecter facilement des kits VR.

La haute qualité des cartes graphiques ASUS est soutenue par le processus de fabrication entièrement automatisé Auto-Extreme, qui répond aux réglementations environnementales les plus strictes en éliminant les produits chimiques nocifs et en réduisant la consommation d'énergie de 50 %. De plus, depuis le lancement des cartes graphiques dotées de la technologie Auto-Extreme, leur fiabilité a augmenté de 30 %.

Les cartes graphiques Asus modernes sont compatibles avec l'utilitaire exclusif GPU Tweak II, qui vous donne un contrôle total sur le sous-système graphique de votre ordinateur, y compris des fonctionnalités d'overclocking avancées pour les overclockeurs. Par exemple, la nouvelle fonctionnalité Gaming Booster vous permet d'allouer instantanément toutes les ressources informatiques disponibles à une application en cours d'exécution pour garantir des performances maximales.

Autres nouvelles intéressantes :

▪ Puce de graphène Plasmon

▪ Capteur de pouls pour ordinateur portable

▪ Le béton de la Rome antique peut être restauré

▪ Adaptateurs AC-DC étanches Mean Well OWA-90E

▪ L'utilisation du bismuthate de sodium va accélérer le développement de l'électronique

Fil d'actualité de la science et de la technologie, nouvelle électronique

 

Matériaux intéressants de la bibliothèque technique gratuite :

▪ section du site Communication radio civile. Sélection d'articles

▪ Article Étreinte de Morphée. Expression populaire

▪ article Comment les hérissons ont-ils façonné les coupes de crème glacée McDonald's ? Réponse détaillée

▪ article Rotor principal d'un autogire. Transport personnel

▪ article Détecteur de conduite de gaz. Encyclopédie de l'électronique radio et de l'électrotechnique

▪ Article Le Secret des Sept. Concentrer le secret

Laissez votre commentaire sur cet article :

Nom:


E-mail (facultatif) :


commenter:





Toutes les langues de cette page

Page principale | bibliothèque | Articles | Plan du site | Avis sur le site

www.diagramme.com.ua

www.diagramme.com.ua
2000-2024